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COMMENT 

Coil-globule transition temperature enhancement in a polymer 
molecule adsorbed to a wall 
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$ Theory and Computational Science Group, AFRC-IFRN, Colney Lane, Norwich 
NR4 7UA. UK 

Received 23 January 1990 

Abstract. We present novel real-space renormalization results for a lattice model of the 
collapse (coil-globule) transition of a polymer molecule adsorbing to a wall. These results 
support the conjecture that adsorption stabilises the collapsed phase by enhancing the 
collapse transition temperature. The analysis is developed, in both two and three space 
dimensions, for a suitably modified version of a recently proposed geometrical self-attracting 
self-avoiding walk model of polymer collapse. 

Recently, there has been considerable theoretical interest in the problem of polymer 
adsorption by a wall exhibiting a short-ranged attractive potential towards the 
macromolecule (see, e.g., Eisenriegler et a1 1982, Kremer 1983, de Gennes 1987, 
Duplantier 1988, Burkhardt et a1 1989, Guim and Burkhardt 1989 and references 
therein). It has been recognised that the problem is analogous to that of the critical 
behaviour of a magnetic system with modified couplings along the edge of the semi- 
infinite bulk, with the ‘special’ critical point (in magnetic language) corresponding to 
the adsorption transition for the macromolecule. At the same time, considerable efforts 
have been devoted to the understanding of the collapse (coil-globule, or &point) 
transition of a macromolecule in a dilute solution, as induced by changes in the nature 
of the solvent (through, e.g., changes in temperature) (see, e.g., Baumgartner 1982, 
Duplantier 1982, 1986, Privman 1986, Saleur 1986, Jug 1987, Duplantier and Saleur 
1987, 1988, Seno and Stella 1988 and references therein). The latter polymer transition 
also has a magnetic equivalent in the tricritical point of a (zero component) classical 
spin system. 

Much of the current interest in the above polymer transition problems stems from 
the availability of recently developed conformal invariance methods of investigation 
(Cardy 1987) for two-dimensional lattice models of the transitions. However, par- 
ticularly where three-dimensional systems are concerned, the transitions involved also 
have an intrinsic fundamental importance for the modelling of actual physical and 
biophysical processes. In particular, the @-point transition is an oversimplified but 
useful representation of protein folding induced by solvent changes (Volkenstein 1977). 
In this respect, little attention has been devoted to the situation in which both of the 
above transitions take place, possibly simultaneously, that is to the problem of the 
collapse of a polymer chain adsorbing to a rigid wall. New phenomena should take 
place in this situation, modelling what might happen, for example, to the folding of 
a protein molecule sitting at a fluid-solid interface (colloidal stabilisation by biopoly- 
mers) or on the surface of an impenetrable biological membrane. 
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In this comment we examine the problem of the collapse of an adsorbed 
macromolecule by means of simple real-space renormalisation methods applied to a 
suitable lattice model of the problem at hand. Our principal aim is to investigate the 
nature of the phase diagram for the macromolecule, as characterised by the fixed points 
and size exponents of the appropriate renormalisation group recursion relations. A 
key issue, beside the question of the existence of a multicritical point where collapse 
and adsorption coexist (a  question to which preliminary affirmative answers have 
already been given by Bouchaud and Vannimenus (1989) and by Veal et a1 (1990) for 
less realistic polymer models), is whether or not the collapse temperature (or 8- 
temperature) becomes modified by adsorption to a surface. Alternatively, the question 
might be whether or not the adsorption temperature is modified by collapse of the 
macromolecule. For the associated magnetic system no shift in the bulk tricritical 
temperature can be induced by the wall potential in the thermodynamic limit, as the 
fraction of modified bonds (those on the surface) always vanishes in that limit. 
However, for the polymer problem at hand the fraction of surface monomers becomes 
non-vanishing precisely upon adsorption, so that a macroscopic number of monomers 
becomes affected by the surface potential in the thermodynamic limit. Another possible 
reason for conjecturing a shift in the &temperature lies in the entropy estimates of 
Dill and Alonso (1988) for a protein attached to a wall. These authors estimate the 
reduction of entropy for coil-like configurations with respect to that for globule-like 
ones when attachment to an (attractive) impenetrable wall takes place, ensuing in the 
stabilisation of the collapsed phase. In the following we give evidence for the first 
time that this stabilisation corresponds to an enhancement of the &temperature induced 
by the attractive wall, as one might naively expect. Our results have been obtained 
through simple real-space renormalisation methods, but it is hoped that more powerful 
techniques (e.g. conformal invariance) can be employed to corroborate our findings. 

Our model is the surface adsorption version of a self-attracting self-avoiding walk 
(SASAW) lattice model proposed by one of the present authors to study the bulk &point 
via real-space renormalisation methods (Jug 1987). In the original model, the 
macromolecule is represented by a random walk on a suitably chosen lattice where 
sites can be visited twice at the most, provided a probabilityf is assigned to each chain 
self-contact. The f-factor can represent temperature changes in the solvent via the 
plausible functional dependence f = 1 - exp( E /  k T ) ,  E < 0 representing the effective 
solvent-mediated monomer-monomer attraction energy. The lattice structure is chosen 
so as to disallow more than single contacts amongst the chain monomers, a geometrical 
way of taking into account three- and higher-body repulsions which are believed to 
be always present when collapse takes place. In two dimensions, this is accomplished 
by making use of a triangular lattice, which then forms the basis for the three- 
dimensional lattice structure we use in this work. Real-space renormalisation methods 
can then be implemented by enumerating random walks in the appropriate cell and 
weighting each chain link by a bond fugacity kb and each contact by a probability 
factor$ A recursion relation is set up for the pair (kb, f ) ,  yielding the correct phase 
diagram with a SAW (self-avoiding walk, or coil phase), a G (globular, or collapsed 
phase) and @-point fixed point structure characterised by reasonable values for the 
related exponents (Jug 1987). 

Following the approach by Kremer (19831, the short-ranged potential on the surface 
is then introduced by modifying the bond fugacities along the edge of the surface from 
k b  to k, .  Figure 1 gives a schematic representation of the geometrical nature of the 
resulting lattice model. Recursion relations for k, and k, are then derived by equating 
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Figure 1. Schematic representation of the SASAW model of adsorption of a collapsing 
macromolecule ( d  = 2 space dimensions). 

bare and renormalised cell partition functions for the SASAW model with and without 
the surface added: 

Zr'"'(kb, k l , f ' )  =ZSB(X)(kb, k , , f )  (1) 

Here, the cell partition functions are given by (Jug 1987) 

zb , (kb , f )  (1 - f )nm""ZbsAW(kb)+  m = l  ' f x f m z ; m ( k b )  ( 3 )  

(4) 
n m a x  

zSB("'( k b  9 ks 9 f ) = ( 1 -f ) nmaxZg%k( kb 3 k,) + c fmZzh'( k b ,  ks) 
m = l  

where ZsAw and Z,, enumerate the walks with no ( m  = 0) or m contacts in the cell, 
respectively. Using a generic notation: 

Z, = 1 c,(nb, n,)k,"bk:s 
spanning walks 

n b  and n, being the number of random walk steps in the bulk and on the surface (if 
present), respectively, and c,(nb, n,) the number of SASAW with (nb,  n,) steps and 
having the property a. nmax is the maximum number of contact sites available in the 
chosen lattice cell and x represents the minimum allowed fraction of surface bonds 
in a partition sum like ( 5 )  (that is, we sum only over walks spanning in the direction 
of the surface and having ns/(  nb+  n,) 5 x if the surface is present). For the renormalised 
cell partition function we have used the modified construction 

rima" 
zg= f " Z &  

m = O  

where Zb0 = ZgAw, since we must allow for the possibility of globule-like walks to be 
renormalised into coil-like walks whenf=f '  = 1. The recursion relation for the contact 
probability f' is given as in Jug (1987), in terms of the fraction of weighted walks 
containing at least one contact in the bare cell: 

p m : X ] f m ( l  - f ) n m a x - m Z s ( *  ' 
(7)  

f'= Gmmln 
(1 - f ) n m . x Z S ( X m l n ) + Z n m a l  ~ " ( 1  - f ) n m a x - m Z s ( x  

SAW m = l  G"In 

where the partition functions refer to the minimum allowed adsorbed fraction in order 
to take as many configurations as possible into account. 

We have determined the phase behaviour of our SASAW model through the study 
of the fixed-point structure of the recursion relations ( l) ,  (2)  and (7) thus defined. In 
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Table 1. Fixed point characterisation for the recursion relation in d = 2. Reported are the 
SAW,  0 and G fixed point values both with and without surface interactions to support 
our main claim in the paper. Results refer to 2 x 2 3 1  x 1, 3 x 3 3 l  x 1 and 3 x 3 = $ 2 x 2  
cell renormalisations. A study as a function of the minimum adsorbed fraction x is reported 
in one case. Stars denote complex eigenvalues; in brackets are the expected exponent 
values, when known. 

SAW e Globule 

2 x 2 Bulk k, = 0.316 vb = 0.782 (a) k, = 0.498 vb = 0.542 ($1 k, = 0.451 vb= 0.560 (4) 
Surface k, = 0.316 vb = 0.782 (1) k, = 0.518 vb = 0.580 k, = 0.451 vb = 0.560 (4) 
x = a  k, = 0.432 v, = 1.465 ($) k, = 1.005 v, = 1.060 k,=0.862 v,= 1.000 (1) 

1 x 1  f = o  f = 0.663 vI = 1.945 f = 1  

f = o  f = 0.480 uf = 2.466 f = 1  

Surface k,=0.316 v,=0.782 t i )  kb=0.516 vb=0.572 k, = 0.451 vb = 0.560 (f) 
x = $  k, = 0.384 vs = 1.613 ($) k, = 0.795 vs = 1.241 k,=0.687 v,=1.155 (1) 

Surface k, = 0.316 vb = 0.782 (f)  k, = 0.514 vb = 0.564 k, = 0.451 vb = 0.560 (4) 
x=;  k, = 0.377 vs = 1.630 (t) k, = 0.615 v, = 1.507 k,=0.553 v,=1.365 ( 1 )  

f = o  f = 0.510 v, = 2.521 f = 1  

f = o  f = 0.534 vf = 2.563 f = l  

3 x 3  Bulk 
1 x 1  

Surface .=A 

k, = 0.298 
f = O  

k, = 0.298 
k, = 0.413 
f = o  

vb = 0.772 (f) k, = 0.376 
f = 0.535 

k, = 0.392 
k, = 0.617 
f = 0.404 

vb = 0.772 (2) 
v, = 1.547 ($) 

vb = 0.615 ($) k, = 0.338 vb =0.632 (4) 
vI = 3.056 f = 1  

vb = 0.618 k, = 0.338 vb= 0.632 (4) 
v,= 1.271 k, = 0.529 v, = 1.241 (1) 
V/ = 6.063 f = 1  

3 x 3 Bulk 
2 x 2  

Surface 
x=.! 

k, = 0.284 
f = o  
k, = 0.284 
k, = 0.453 
f = o  

vb = 0.757 (2) k, = 0.449 
f = 0.256 

k, = 0.435 
k, = 0.847 
f =0.180 

vb = 0.757 ( 9 )  
v, = 1.490 ( t )  

= 0.552 ($1 k, = 0.356 vb = 0.487 (4) 
V/ = 1.622 f = 1  

kb = 0.356 vb = 0.487 (4) v b = * * *  
v, = 1.109 k, = 0.675 U, = 0.999 (1) 
U I- - * * *  f = 1  

Table 2. As in table 1, but for d = 3 2 x 2 x 2 3 1  x 1 x 1 cell renormalisation 

SAW 6 Globule 

2 ~ 2 x 2  Bulk kb=0.222 vb=0.635 (0.588) k,=0.319 vb=0.410 (f) kb=0.281 vb=0.425 (4) 
l X l X l  f = o  f =  0.524 uf = 2.383 f = 1 

Surface k,= 0.222 vb = 0.633 (0.588) k, = 0.341 vb = 0.454 k, = 0.281 vb = 0.425 (4) 
x = t  k, = 0.256 v, = 0.91 1 k, = 0.379 v, = 0.688 k, = 0.306 U, = 0.643 

f = o  f=0.268 vI=3.616 f = 1  

Surface kb = 0.222 U, = 0.635 (0.588) kb = 0.335 vb = 0.418 k, = 0.281 U, = 0.426 (5) 
x = Q  k, = 0.245 v, = 0.972 k, = 0.348 vs = 0.741 k, = 0.291 vs = 0.71 1 

f = o  f=0.372 vf =6.173 f = 1 

Surface k, = 0.222 v b  = 0.635 (0.588) k, = 0.333 Yb = 0.415 kb = 0.281 v, = 0.425 (4) 
x = l  I2 k, = 0.245 vs = 0.972 k, = 0.342 vs = 0.753 k, = 0.288 v, = 0.733 

f = o  f = 0.394 vf = 5.894 f = 1 
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d = 2 space dimensions we have considered triangular lattice cells of three sizes: 3 x 3 
( nmax = 9), 2 x 2 ( nmax = 4) and 1 x 1 ( nmax = l ) ,  with the adsorbing line along the base 
of the cell. In d = 3 we have considered triangular lattice based cells of two sizes: 
2 x 2 x 2 ( nmax = 8) and 1 x 1 x 1 ( nmax = l ) ,  with the adsorbing surface on the triangular 
base. Details of the walks’ enumeration algorithm employed and of the respective 
partition functions will be given elsewhere. Here we discuss the overall physical picture 
emerging from the fixed point structure. Needless to say, f o r f ’ = f =  0 we recover the 
SAW adsorption phase diagram of Kremer (1983), with differences allowing for the 
different lattice structure. A completely analogous phase structure applies forf’  =f = 1 
for the adsorption of a collapsed globule. The decrease of the v, exponent (expected 
for a more compact globular structure) should be noted. For k l =  k, = 0 we recover the 
bulk d-dimensional collapse phase diagram (Jug 1987, though novel results for d = 3 
are presented in this work), whilst for kb = kb = 0 we obtain the bulk ( d  - 1)-dimensional 
collapse phase diagram (non-trivial only for d = 3). 

As anticipated, a novel fixed point (e, ,  or S o )  where collapse and adsorption coexist 
is also found in all cases. The feature we want to stress in this comment is that we 
have always found the value of fe*, to be significantly depressed by the presence of the 
attracting surface, corresponding to an enhancement of the &point transition tem- 
perature. Tables 1 and 2 present the fixed point characterisation for the various 
renormalisation schemes adopted, with the exponents vb and v, characterising the size 
of the SASAW in the directions parallel and perpendicular to the surface, respectively, 
whilst vr characterises the size of the incipient collapsed cluster on approach to the 
&point. It can be seen that exponents appear to be close to the expected values, when 
known. The cell renormalisation method employed, however, does not allow us to 
make a particular claim on any new exponent. A finite size analysis is also beyond 
the capabilities of the method; however, we do believe that even within our relatively 
small cell calculations the shift in the @-point temperature induced by adsorption is a 
genuine effect not induced by finite size circumstances. 

In conclusion, we have presented results from a cell renormalisation study of a 
SASAW model of collapsing polymer adsorption to a wall. There is strong evidence for 
both d = 2 and d = 3 that adsorption induces an enhancement of the collapse tem- 
perature, owing to a stabilisation of the collapsed phase by the wall, as conjectured 
by Dill and Alonso (1988). Clearly, owing to the short range of the surface attractive 
potential, the shift should be considered as a novel collective effect within the polymer 
molecule as a whole. In view of the quality of the results obtained and of its simplicity 
and adaptability, the SASAW model now appears as an ideal candidate for extensions 
to the study of more realistic models of protein molecule conformation, both in bulk 
and at interfaces or membranes. 
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